miércoles, 22 de julio de 2009

El Pitillo Metalico



Mi nombre es jorge verdugo del grado 11ªA me apasiona la ingeniería por que es el conjunto de conocimientos y técnicas científicas aplicadas, que se dedica a la resolución u optimización de los problemas que afectan directa mente a la humanidad. Esta experiencia de metales que succionan líquidos me llamo la atención por que es muy curioso que los metales siendo un solido tan denso ya estén en la capacidad de succionar un liquido.

si quieres saber mas sobre esta megatendencia haz click aqui.
corresponde al pilar de mejora en la calidad de vida.




ELEMENTOS CONSTANTES
EMPESARE POR DEFINIR

¿QUE ES UN METAL?

Metal se denomina a los elementos químicos caracterizados por ser buenos conductores del calor y la electricidad, poseen alta densidad, y son sólidos en temperaturas normales (excepto el mercurio y el galio); sus sales forman iones con cargas positivas (cationes) en disolución.El concepto de metal refiere tanto a elementos puros, así como aleaciones con características metálicas, como el acero y el bronce. Los metales comprenden la mayor parte de la tabla periódica de los elementos y se separan de los no metales por una línea diagonal entre el boro y el polonio .En comparación con los no metales tienen baja electronegatividad y baja energía de ionización, por lo que es más fácil que los metales cedan electrones y más difícil que los ganen.


HISTORIA

Metales como el oro, la plata y el cobre, fueron utilizados desde la prehistoria Aunque al principio sólo se usaban si se encontraban fácilmente en estado metálico puro (en forma de elementos nativos), paulatinamente se fue desarrollando la tecnología necesaria para obtener nuevos metales a partir de sus minerales, calentándolos en un horno mediante carbón de madera.
El primer gran avance se produjo con el des cubrimiento del bronce, fruto de la utilización de mineral de cobre con incursiones de estaño, entre 3500 a. C. y 2000 a. C., en diferentes regiones del planeta, surgiendo la denominada
Edad de Bronce, que sucede a la Edad de Piedra.
Otro hecho importante en la historia fue el des cubrimiento del hierro, hacia 1400 a. C. Los
hititas fueron uno de los primeros pueblos en utilizarlo para elaborar armas, tales como espadas, y las civilizaciones que todavía estaban en la Edad de Bronce, como los egipcios o los aqueos, pagaron caro su atraso tecnológico.
No obstante, en la antigüedad no se sabía alcanzar la temperatura necesaria para fundir el hierro, por lo que se obtenía un metal impuro que había de ser moldeado a martillazos. Hacia el año 1400 d.C. se empezaron a utilizar los hornos provistos de fuelle, que permiten alcanzar la temperatura de fusión del hierro, unos 1.535 ºC.
Henry Bessemer descubrió un modo de producir acero en grandes cantidades con un coste razonable. Tras numerosos intentos fallidos, dio con un nuevo diseño de horno (el convertidor Thomas-Bessemer) y, a partir de entonces, mejoró la construcción de estructuras en edificios y puentes, pasando el hierro a un segundo plano.
Poco después se utilizó el aluminio y el magnesio, que permitieron desarrollar aleaciones mucho más ligeras y resistentes, muy utilizadas en aviación, transporte terrestre y herramientas portátiles. El titanio, que es el último de los metales abundantes y estables con los que se está trabajando, y se espera que, en poco tiempo, el uso de la tecnología del titanio se generalice.



PROPIEDADES

Los metales poseen ciertas propiedades físicas características: La mayoría de ellos son de color grisáceo, pero algunos presentan colores distintos; el bismuto (Bi) es rosáceo, el cobre (Cu) rojizo y el oro (Au) amarillo. En otros metales aparece más de un color, y este fenómeno se denomina policromismo. Otras propiedades serían:
Maleabilidad: capacidad de los metales de hacerse láminas.
Ductilidad: propiedad de los metales de moldear se en alambre e hilos.
Tenacidad: resistencia que presentan los metales a romperse por tracción.
Resistencia mecánica:capacidad para resistir esfuerzo de tracción, comprensión, torsión y flexión sin deformarse ni romperse.
Suelen ser opacos o de brillo metálico, tienen alta densidad, son dúctiles y maleables, tienen un punto de fusión alto, son duros, y son buenos conductores (calor y electricidad).
Estas propiedades se deben al hecho de que los electrones exteriores están ligados sólo ligeramente a los átomos, formando una especie de mar (también conocido como mar de Drude) que los baña a todos, que se conoce como enlace metálico (véase
semi conductor).

OBTENCIÓN DE LOS METALES

Algunos metales se encuentran en forma de elementos nativos, como el oro, la plata y el cobre, aunque no es el estado más usual.
Muchos metales se encuentran en forma de óxidos. El oxígeno, al estar presente en grandes cantidades en la atmósfera, se combina muy fácilmente con los metales, que son elementos reductores, formando compuestos como la bauxita (Al2O3) y la limonita (Fe2O3).
Los sulfuros constituyen el tipo de mena metálica más frecuente. En este grupo destacan el sulfuro de cobre (I), Cu2S, el sulfuro de mercurio (II), HgS, el sulfuro de plomo, PbS y el sulfuro de bismuto (III), Bi2S3.
Los metales alcalinos, además del berilio y el magnesio, se suelen extraer a partir de los cloruros depositados debido a la evaporación de mares y lagos, aunque también se extrae del agua del mar. El ejemplo más característico es el cloruro sódico o sal común, NaCl.
Algunos metales alcalino-térreos, el calcio, el estroncio y el bario, se obtienen a partir de los carbona tos insolubles en los que están insertos.
Por último, los lantánidos y actínidos se suelen obtener a partir de los fosfatos, que son unas sales en las que pueden estar incluidos.

USOS EN LA INDUSTRIA

Metales que están destinados a un uso especial, son el antimonio, el cadmio o el litio. Los pigmentos amarillos y anaranjados del cadmio son muy buscados por su gran estabilidad, como protección contra la corrosión, para las soldaduras y las aleaciones correspondientes y en la fabricación de baterías de níquel y cadmio, consideradas excelentes por la seguridad de su funcionamiento. También se le utiliza como estabilizador en los materiales plásticos (PVC) y como aleación para mejorar las características mecánicas del alambre de cobre.
Su producción se lleva a cabo en el momento de la refinación de
zinc, con el que esta ligado, se trata de un contaminante peligroso. El litio, metal ligero, se emplea principalmente en la cerámica y en los cristales, como catalizador de polimerización y como lubricante, así como para la obtención del aluminio mediante electrolisis. También se emplea para soldar, en las pilas y en las baterías para relojes, en medicina (tratamiento para los maníaco-depresivos) y en química.
El níquel, a causa de su elevada resistencia a la corrosión, sirve para
niquelar los objetos metálicos, con el fin de protegerlos de la oxidación y de darles un brillo inalterable en la intemperie.
El denominado "hierro blanco" es, en realidad, una lamina de
acero dulce que recibe un baño de cloruro de zinc fundido, y a la que se da después un revestimiento especial de estaño.

DILATACIÓN DE LOS METALES

Los metales son materiales que tienen una amplia dilatación, en parte debido a su conductibilidad. Las dilataciones son perceptibles a veces aún con los cambios de temperatura ambiental. Se miden linealmente y se fija la unidad de longitud para la variación de 1° C de temperatura. Maleabilidad. Es la propiedad de los metales de poder ser modificados en su forma y aun ser reducidos a láminas de poco espesor a temperatura ambiente, por presión continua, martillado o estirado. Produciendo las modificaciones en el metal, se llega a un momento en que el límite de elasticidad es excedido, tornándose el metal duro y quebradizo; es decir, sufre deformaciones cristalinas que lo hacen frágil. La maleabilidad pede ser recuperada mediante el recocido, que consiste en calentar el metal a una alta temperatura luego de laminado o estirado, y dejarlo enfriar lentamente. La maleabilidad se aprecia por la sutileza del laminado. Tomando el oro como base, se suele hacer la siguiente clasificación:
1 Oro. 6 Platino. 2 Plata. 7 Plomo. 3 Cobre. 8 Zinc. 4 Aluminio. 9 Hierro. 5 Estaño. 10 Níquel.

¿COMO SUCCIONAN AGUA ESTOS METALES?

Científicos de la Universidad de Rochester han conseguido emular la capacidad de los árboles para elevar el agua desde las raíces hasta las hojas. Este fenómeno se produce en la naturaleza cuando las fuerzas intermoleculares adhesivas entre el líquido y el sólido son mayores que las fuerzas intermoleculares cohesivas del líquido, lo que permite que se produzca la succión del agua incluso en contra de la gravedad. Ahora, los investigadores han logrado, utilizando un láser extremadamente rápido y preciso, grabar una serie de canales en los metales que permite que éstos puedan mover los líquidos “hacia arriba”. Esta técnica permitirá bombear cantidades microscópicas de líquido en un chip de diagnóstico médico, enfriar un procesador informático o convertir cualquier metal simple en una superficie anti-bacteriana.



POSIBLES VARIACIONES



Yaiza Martínez.



En la naturaleza, los árboles succionan grandes cantidades de agua a través de sus raíces para llevarla después hasta sus hojas, situadas a varios metros de altura del suelo, gracias a la
capilaridad. Esta cualidad se produce cuando las fuerzas intermoleculares adhesivas entre el líquido y el sólido son mayores que las fuerzas intermoleculares cohesivas del líquido, lo que permite que se produzca la succión del agua hacia arriba, incluso en contra de la gravedad. Ahora, científicos de la Universidad de Rochester, en Estados Unidos, han creado una losa de metal que puede hacer circular el agua en dirección ascendente usando este mismo principio de la naturaleza, aunque a una velocidad que la propia naturaleza envidiaría. Los resultados de la investigación se han publicado en Applied Physics Letters. Técnica láser extremadamente precisa Según informa la Universidad de Rochester en un comunicado, la técnica podría resultar muy valiosa para lograr bombear cantidades microscópicas de líquido en un chip de diagnóstico médico, para enfriar un procesador informático o para convertir cualquier metal simple en una superficie anti-bacteriana, por ejemplo. Chunlei Guo, profesor de óptica de dicha universidad y autor de la investigación señala en dicho comunicado: “Nosotros podemos cambiar la estructura superficial de casi cada pieza de metal para controlar la forma en que el líquido interacciona con cada una de ellas. Podemos incluso controlar la dirección en la que los líquidos fluyen”. Para lograr esta proeza, Guo y su colaborador, Anatoliy Vorobyev, utilizaron una pulsación ultra-rápida de luz láser que hicieron incidir sobre la superficie de un metal. Por toda la superficie de este metal formaron así, a nano y microescala, agujeros, glóbulos y hebras. El láser utilizado fue un láser de femtosegundo, que produce pulsaciones de una duración de sólo unos pocos cuatrillones de segundo (un femtosegundo es a un segundo lo que un segundo sería a 32 millones de años). Durante sus brevísimas explosiones, el láser de femtosegudo utilizado despliega tanta potencia como la que despliega la red eléctrica norteamericana al completo, toda ella focalizada en un punto del tamaño de un punto de aguja, explica el científico. A pesar de su increíble intensidad, el láser se activa mediante un enchufe de pared corriente. Nanoestructuras en el metal Por la lámina metálica modificada mediante láser, los investigadores han conseguido que el líquido se mueva a una velocidad de un centímetro por segundo en contra de la gravedad. Este proceso, señala Guo, es muy similar al de la leche “subiendo” por la servilleta de papel cuando empapamos ésta para limpiar una superficie o al de las gotas de vino que parecen escalar por las paredes de las copas: las atracciones moleculares y la evaporación se combinan en ambos casos para mover los líquidos en sentido contrario al de la gravedad. La novedad del trabajo de Guo y Vorobyev radicaría, por tanto, en que las nanoestructuras del metal generadas con el láser pueden modificar la forma en que las moléculas del líquido interactúan con las moléculas del metal, permitiendo que éstas se atraigan entre sí con mayor o menor intensidad en función de donde sean colocadas. Las nanoestructuras metálicas se adhieren más rápidamente a las moléculas líquidas de lo que las moléculas líquidas se adhieren unas a otras, lo que origina que el líquido se expanda rápidamente por el metal. Los canales grabados con láser en el metal permiten en definitiva controlar el comportamiento del líquido.

Aplicaciones Guo explica: “imagínense un sistema de canales similar a los circuitos electrónicos impresos en los microprocesadores. Con este sistema podremos ejecutar trabajos químicos o biológicos con una minúscula cantidad de líquido”. Por ejemplo, con sangre. La sangre podría circular con precisión a lo largo de estos canales hacia un sensor que realice el diagnóstico de una enfermedad. Con un sistema tan diminuto, las enfermeras no necesitarían extraer todo un tubo de sangre para hacer las pruebas. Un simple arañazo en la piel contendría mayor cantidad de células de las necesarias para el micro-análisis consecuente. Por otro lado, el equipo de Guo también ha creado con el láser de femtosegundo un metal que reduce la atracción entre las moléculas de agua y las moléculas de metal, es decir, que favorece la hidrofobia. Dado que los gérmenes están compuestos mayormente de agua, resultaría imposible para ellos crecer en una superficie hidrofóbica. Utilizando esta técnica, podría convertirse cualquier m

etal en un material anti-bacteriano. Ahora mismo, el proceso de modificación de una lámina de metal supone una media hora de tiempo, pero Guo y Vorobyev trabajan en afinar la técnica para hacerla más rápida. Otros trabajos con el láser de femtosegundo Guo también ha publicado recientemente que ha conseguido crear bombillas que utilizan la mitad de energía para producir la misma cantidad de luz, utilizando el láser de femtosegundo. Según el científico, el rayo láser fue aplicado a través del cristal de una bombilla para alterar una pequeña parte del filamento de ésta. Posteriormente, al encender dicha bombilla los investigadores se dieron cuenta de que la parte modificada brillaba más que el resto del filamento, sin que se registraran cambios en el consumo energético. Por otro lado, en 2008 Guo y su equipo utilizaron también el láser de femtosegundo para crear nanoestructuras que reflejaban sólo ciertas longitudes de onda de la luz. Gracias a esto, pudieron colorear los metales. Por ejemplo, fueron capaces de darle al aluminio la apariencia del oro.


COMBINACIONES ALEATORIA



Bueno este invento es muy interesante pero en mi ciudad paipa(boyaca) no tendria ninguna aplicasion pero¡ ya que hablamos de plantas tambien en paipa se esta presentando un problema en las veredas de la misma y es que las plantas les esta apareciendo unas pequeñas manchas que aun no se sabe que pueda ser, y puede que en un futiro les sea perjudicial para los abitantes de esta sona y para nosotros mismos que consumimos sus productos.


Mi propuesta es empesar a investigar para dar con el ajente contaminante que esta atacando a las plantas y poder dar una solucion a este problema para evitar daños en la salud de toda la ciudadania de paipana.



JORGE ARLEY VERDUGO SUAREZ 11A

7 comentarios:

  1. exelente aporte jorge uno que otro error ortografico pero de resto esta muy bien
    exitos!!!!!
    att: Manuel Neira

    ResponderEliminar
  2. me parese creativa esta idea ya que de la naturaleza se puede crear una idea muy buena que servira a nuestras generaciones y futuras generaciones sobre el cuidado que se debe tener con esta......
    espero que te vaya muy bien en tu vida juicio y suete
    att: nathaly ortiz

    ResponderEliminar
  3. me agrada la idea de un pitillo q pueda absorver agua ya q podria tener muchas aplicaciones dentro de la ingenieria

    juan pablo hernandez

    ResponderEliminar
  4. es gratificante saber q cada invento de estas espocas gira entorno a la calidad de vida de nosotros me encanta saber q gent tan joven como nosotros le interesa el provenir de la humanidad...
    exitos jorge...

    ATT: laUrItA YaTe PrAdA

    ResponderEliminar
  5. pues jorge me parece muy bueno su proyecto esta bien ordenado, me convence mucho le deseo exitos, aunque mucho cuidado con la ortografia
    att johan vargas i-an

    ResponderEliminar
  6. ps me parece verdaderamente interesante la megatendencia, ps el pensar q los metales absorben líquidos hacia arriba es algo realmente novedosa y un paso hacia delante en la carrera por parecernos a dios...

    luis sandoval

    ResponderEliminar